Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati

نویسنده

  • XUN YU ZHOU
چکیده

A stochastic linear quadratic (LQ) control problem is indefinite when the cost weighting matrices for the state and the control are allowed to be indefinite. Indefinite stochastic LQ theory has been extensively developed and has found interesting applications in finance. However, there remains an outstanding open problem, which is to identify an appropriate Riccati-type equation whose solvability is equivalent to the solvability of the indefinite stochastic LQ problem. This paper solves this open problem for LQ control in a finite time horizon. A new type of differential Riccati equation, called the generalized (differential) Riccati equation, is introduced, which involves algebraic equality/inequality constraints and a matrix pseudoinverse. It is then shown that the solvability of the generalized Riccati equation is not only sufficient, but also necessary, for the well-posedness of the indefinite LQ problem and the existence of optimal feedback/open-loop controls. Moreover, all of the optimal controls can be identified via the solution to the Riccati equation. An example is presented to illustrate the theory developed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Indefinite Stochastic Linear Quadratic Control and Generalized Differential Riccati Equation

We consider a stochastic linear–quadratic (LQ) problem with possible indefinite cost weighting matrices for the state and the control. An outstanding open problem is to identify an appropriate Riccati-type equation whose solvability is equivalent to the solvability of this possibly indefinite LQ problem. In this paper we introduce a new type of differential Riccati equation, called the generali...

متن کامل

Solvability and asymptotic behavior of generalized Riccati equations arising in indefinite stochastic LQ controls

The optimal control problem in a finite time horizon with an indefinite quadratic cost function for a linear system subject to multiplicative noise on both the state and control can be solved via a constrained matrix differential Riccati equation. In this paper, we provide general necessary and sufficient conditions for the solvability of this generalized differential Riccati equation. Furtherm...

متن کامل

Solvability Conditions for Indefinite Linear Quadratic Optimal Stochastic Control Problems and Associated Stochastic Riccati Equations

A linear quadratic optimal stochastic control problem with random coefficients and indefinite state/control weight costs is usually linked to an indefinite stochastic Riccati equation (SRE), which is a matrix-valued quadratic backward stochastic differential equation along with an algebraic constraint involving the unknown. Either the optimal control problem or the SRE is solvable only if the g...

متن کامل

Generalized Riccati Equations Arising in Stochastic Games

We study a class of rational matrix differential equations that generalize the Riccati differential equations. The generalization involves replacing positive definite “weighting” matrices in the usual Riccati equations with either semidefinite or indefinite matrices that arise in linear quadratic control problems and differential games−both stochastic and deterministic. The purpose of this pape...

متن کامل

Linear-Quadratic Control of Discrete-Time Stochastic Systems with Indefinite Weight Matrices and Mean-Field Terms

In this paper, the linear-quadratic optimal control problem is considered for discretetime stochastic systems with indefinite weight matrices in the cost function and mean-field terms in both the cost function and system dynamics. A set of generalized difference Riccati equations (GDREs) is introduced in terms of algebraic equality constraints and matrix pseudo-inverse. It is shown that the sol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001